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ABSTRACT

A basic theory for broadband balanced frequency-halving circuits is presented. The analysis is applic-
able to both Schottky-barrier and reverse-biased abrupt-junction varactors and is based on the solution of

exact nonlinear differential equations. h approximate algebraic method yields the global steady–state ampli–

tude and phase solutions, while numerical integration gives transient solutions under specific conditions. These

circuits are useful in bandwidth-compression, frequency-translation, PSK carrier-recovery and for stabilizing RF

sources to LF references.

Introduction

Although recent papers have described practical
frequency halvers designed by various empirical/ex–

1-3 4,5
perimental and computer–aided techniques, no
satisfactory theory has been available to account for

their interesting large-signal and wideband properties.
This paper gives the basic theory for a class of bal-

anced frequency–halving networks which depend for

their operation on the nonlinear capacitance–voltage
relationship of abrupt–junction or Schottky–barrier
varactors. Frequency– and time-domain solutions are
presented.

For the steady-state response, the differential

equation model is solved by an approximate analytical

method because this gives a deeper insight into the

nonlinear interactions than does a strictly numerical

analysis. Such insight is considered important since
the operation of these parametric subharmonic fre-
quency-halvers is much less well understood than, for

example, the operation of mixers. In the analysis,
advantage is taken of the fact that the inverse half–
power capacitance-voltage law typical of both types

of varactor leads to considerable mathematical simpli–

fication and to the possibility of closed-form expres-

sions for the steady–state solution.

Numerical integration is used to obtain the tran-

sient response because of the complexity of the cor–

responding analytical solution.

Halver Topology

Previously–described balanced halvers have em–

ployed the topologies of Fig. l(a,b). In each case an
inductive loop contains two varactors. An input at
20 excites both varactors in phase. Under specific
conditions, balanced loop oscillations occur at a fre–
quency u, at which the varactor voltages are 180° out
of phase. Since the amplitude increases towards a
large final value and the circuit is strongly nonlinear,

conventional analyses cannot be used.

Fig. 2 shows a simple model for the practical net-

works. The U-shaped microstrip loop of Fig. l(a) and

the transverse waveguide section of Fig. l(b) are re-
presented by the centre-tapped inductor L1. Each
varactor has a cutoff frequency

fc(vb) =
1

2mrsCj(Vb)
(1)

where Cj(Vb) is the depletion-region capacitance and

r is the diode series resistance. In Fig. 2, L2 and

{ represent the coupling of the subharmonic voltage

which appears across AA’ (Fig.l(a,b)) to the external

load.

For a threshold input level P, , the loop reson–

ates at a particular subharmonic f~~quency

uo(Vb) = [+ LICj(Vb)]-4 (2)
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Fig. l(a) Basic m~crostrip/CPW frequency–halving

network .
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Fig. 2 Model for the basic wideband frequency halver.
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For increasing Pin, l/2-subharmonic output occurs ovez

increasing bandwidths, the greater increase being for
U<tio . For sufficient Pin, octave-plus bandwidth is

possible.

Mathematical Model

The varactors in Fig. 2 are modelled as

~= (1+*)2 –1

v
(3)

0 0

where

V. = I$O+vb

$0 = built-in potential

‘b =
reverse bias voltage

Q. = 2vocj(vb).

This is valid for both Schottky and reverse-biased*

abrupt-junction varactors provided

v(t) > _l

V.
(4)

and permits an exact differential equation model to be
found when the inductors are tightly coupled:

(~+ 5F)i!+u+%(u’2+z2) =x(t) (5a)

Y+<;+Z+%UZ=;ICL (5b)

..
z =~+;lcL. (5C)

All derivatives are with respect to T = u-t and the

normalizations are:

U = (ql + q2)/Qo,

z = (ql – q2)/Qo,

x = vp(t)/vo ,

<p = uoRo.Gj(Vb),
L

LL = uo~cj(vb),

u

sum of varactor charges

difference between them

pumping voltage

pump damping

load damping

ratio of resonance to cutoff
frequencies.

Equation (5a) describes the input circuit, (5b) the re–

sonant loop and (5c) the output circuit. Equations (5a)

and (5b) are coupled only through their nonlinear terms;

the corresponding circuits are coupled only via the var-

actor nonlinearities.

Analytical Solution

For halving, the input is

X(T) = XCOs 2vT, (6)

where v = u/we, the detuning. By symmetry, Z(T) and

y(T) contain only odd harmonics, whereas U(T) contains
only even harmonics. Analysis is simplified by assum–
ing RL large (E~l small). Then eqns, (5) reduce to a

single differential equation in z:

(2)2 - 2(5+.5p)zr2+Ei) + 2(2C+EP)22 +

C(3E+2CP)(;)2 +;z4 = Z2(1+X). (7)

Following Hayashi6, an approximate %–subharmonic solu–
tion is found by replacing Z(T) by its fundamental

component
2(T) = ZCOS(VT+~)> (8)

* To avoid charge-storage phenomena .

harmonics being neglected. By substituting (8) into (7)
and equating phase and quadrature components separately

to zero, steady–state solutions for the differential
charge amplitude Z and phase @ are obtained. The cor-
responding output voltage is found by using (5c), i.e.

7(T) = Ycos(~T + e) = 2; (9)

This implies that

Y= -2V2Z (lo)

The resulting solution for the subharmonic amplitude Y
ia

[#(v4-1) +$(9$+8 cP)v2 ++ . :42 + [2~v]2 = X2 (12)-21

with phase angle

2CV3
@ = + arcsin(~) . (13)

The validity condition (4), together with (10), imposes

the constraint

y < 4V2—

since max IZl = 2.0.

Steady–State Response

The limit of frec!uencv-halvinx on

(14)

(15)

the (v,X)–plane
ia found by setting Y~O in- (12). in example for

c = 0.1, Cp= O is shown in Fig. 3.
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Fig. 3 Calculated frequency-halving and hysteresis re-
gions for co.

~= —= 0.1, ~
21Tfe

= O, ~~i= O. Small-
P

signal subharm~nic resonance occurs at v = 1.0.

1
In agreement with experiment, the halving bandwidth in-

creases with X (or P.n), the greater increase occuring

f.r V ‘}l(CII*~ < ~o}. Octave-plu. bandwidth is obtained
fOr X.. Also shown is the limit of the hyster–
esis region. Experimentally, this region is smaller. The
difference is due to the varactor parasitic C neglect-
ed here . P’

Fig.4 shows (X,Y) – profiles for 0.9<v<1.1 and

g = 0.1.

** These results confirm the observed reduction in thre-
shold level and resonance frequency as the magnitude of
the reverse bias Vb is reduced [1, Fig.4].
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Subharmonic output Y(=V~/Vo) versus input

x(=vp/vo) for 3 values of frequency

V(=aluo).

The flat regiona in Fig. 4(b,c) correspond to con-

straint (14). Amplitude hysteresis ia evident in Fig.
4(c).

A frequency–halving response surface in (v,X,Y)-
space is shown in Fig. 5 for the case t = 0.1.

20.00 ,

Fig. 5 Frequency–halving response surface in (v,X,Y)-
apace for ~=0.1.” Hysteresis curves omitted for

clarity.

Numerical Solution

Whereas the analytical solution approximates the
global response of the halver, numerical integration of
the differential equations (5) provides accurate tran--

sient and steady–state solutions under specific condi-
tions. For a given set of values of v,X,6,CP and EL the

nature of the transient depends on three initial condi-

tions: u(0),z(O) and Z(O). In the hysteresis region they

determine the presence or absence of a final steady-
state solution. The typical result of Fig. 6 shows (nor-

malized) (a) the pump voltage x(T), (b) the sum charge

u(T), (c) the difference charge Z(T) and (d) the output

voltage Y(T). The envelope of y(T) resembles experimental

results [e.g. Fig. 9C of 1]. Fig. 6(b) shows that the sum

charge variea primarily at the pump frequency, while

Fig. 6(c) demonstrates the validity of approximation (8).
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Fig. 6 Transient response for X=l.O,V=l.O,E=O.l. Normali--
zed quantities: (a) input at 2w,(b) sum charge,

(c) difference charge,(d) output voltage. Initial
conditions: u(0)= 0.5,2(0)=0.0 ,z(0)= 0.2.

Conclusions

A basic theory for the broadband frequency halver
has been developed. It accounts for the significant
characteristics of various experimental realizations

and provides a starting–point for detailed simulations

including parasitic and distributed topologies.

Acknowledgements

This work was supported by the Defence Research Es-
tablishment, Ottawa, Canada, under Contract 8SU81-00006.

The encouragement of F. Ivanek and the programming

assistance of C. Ho are gratefully acknowledged.

(1)

(2)

(3)

(4)

(5)

(6)

References

R.G. Harrison, “A broad–band frequency divider using

microwave varactors”, IEEE Trans. Microwave Theory

and Techniques, vol. MTT-25, no.12, Dec. 1977, Pp.
1055-1059.

R.G. Harrison, T.W. Tucker, “Frequency division
solves systems problems”, Microwave SYstems News,

vOl.8, Oct. 1978, PP. 97-101.

R.G. Harrison, “A broadband frequency divider in

waveguide”, IEEE ?ITT-S International Microwave Sym–
posium, Ottawa, June 1978, Digest PP.257-259.
A. Lipparini, E. Marazzi and V. Rizzoli, “A new ap-
proach to the computer-aided design of nonlinear net–
works and ita application to microwave parametric
frequency dividers”, IEEE Trans. Microwave Theory and
Techniques, vol. MTT-30, no.7, July 1982, PP.105O–1058.
G. Kalivas and R.G. Harrison, “The design of a new
slotline–type frequency divider”, IEEE MTT–S Interna-

tional Microwave Symposium, Boston, June 1983 (See

this Digest).

C. Hayashi, Y. Nishikawa and M. Abe, “Subharmonic

oscillations of order 1/2”, IRE Transactions on

Circuit Theory, VO1.CT-7, June 1960, PP. 102-111.

205


